
Generation Adversarial Network



为什么要GAN？
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➢生成模型

➢给定一组真实数据样本 {𝑥1, 𝑥2, . . . , 𝑥𝑛}，假设从未知的真实数据分布 𝑃𝑑𝑎𝑡𝑎(𝑥)中采样得到

➢生成模型 (Generative Model)，任务是学习一个模型 𝑃𝑚𝑜𝑑𝑒𝑙(𝑥)，使其尽可能地逼近 𝑃𝑑𝑎𝑡𝑎(𝑥)

➢为什么要生成？

➢理解数据。 一个好的生成模型抓住了数据的本质结构与变化规律

➢创造数据。一旦学到 𝑃𝑚𝑜𝑑𝑒𝑙，可从中采样，生成全新的、与真实数据风格一致的数据

➢应用: 图像合成、风格迁移、数据增强、超分辨率、药物发现等

➢传统方法所面临的挑战

➢传统的对高维数据 𝑃𝑑𝑎𝑡𝑎(𝑥) 进行最大似然估计（MLE），通常是极其困难或不可行

什么是生成模型？
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➢传统范式 (显式/近似优化)

➢1. 定义一个固定的损失函数(如：对数似然, 

MSE)

➢2. 优化生成器以最小化该损失结果：数学

上可解，但感官上模糊

➢GAN范式 (对抗博弈)

➢1. 学习一个动态的损失函数 (判别器D)D的

目标：区分真伪

➢2. 优化生成器G以“欺骗”这个学习中的D

结果：将生成问题转化为博弈问题

为什么要GAN？

既然无法写下一个好的损失函数来衡量“真实性”，那么，我们能否让一个模型自己

去学习这个损失函数？



GAN概要
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➢GAN的根本思想：通过对抗，实现学习

➢类比：伪画制造者 (Generator) vs. 艺术品鉴赏家 (Discriminator)

➢生成器 (Generator, G)

➢“伪造者”，目标画出能够以假乱真的“赝品”。从未见过真正的名画，只能根据鉴赏家反馈提升画技

➢判别器 (Discriminator, D):

➢一个经验丰富的“鉴赏家”，目标是准确区分出“真品”（来自博物馆）和“赝品”（来自生成器）

➢它通过阅览大量的真品和赝品来提升自己的鉴别能力

➢动态博弈过程

➢初期。G的作品很拙劣，D能轻易分辨。D的反馈（“太假了”）指导G改进

➢中期。G的技艺提升，D必须更仔细地寻找破绽才能分辨。D的鉴别能力也在提升

➢最终。G的画作足以乱真，D再也无法有效分辨（只能考猜）

➢此时，我们认为G已经学到了创造“名画”的精髓

➢G和D在目标上相互对抗，但在整个系统的进化上，它们共同协作，缺一不可

GAN的核心思想：直觉与类比
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➢呈现形式

什么是生成模型：Anime Face Generation

Generator

𝑧

𝑦

Normal 
Distribution

Complex 
Distribution

𝑥

0.1
−0.1
⋮
0.7

−0.3
0.1
⋮
0.9

0.3
−0.1
⋮

−0.7

Low-dim vector

high-

dim

vector
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➢This is where the term “adversarial” comes from

Basic Idea of GAN

NN

Generator

v1

Discriminator

v1

Real images:

NN

Generator

v2

Discriminator

v2

NN

Generator

v3

Discriminator

v3



GAN模型架构
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➢框架

GAN的核心机制：模型架构

生成器 (G)

Generator

判别器 (D)

Discriminator

1. 更新判别器 (固定 G)

目标: max log(D(x)) + log(1-D(G(z)))
真实样本 x

x ~ 𝑃𝑑𝑎𝑡𝑎

生成样本 G(z)

(Fake Sample)随机噪声z 概率

(样本为真实的概率)

2. 更新生成器 (固定 D)

目标: min log(1-D(G(z))) [欺骗D]

生成对抗网络 (GAN) 原始框架 [Goodfellow et al., 2014]

z ~ 𝑝z
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➢生成器 (Generator)

➢输入: 从简单先验分布（如高斯分布）中采样随机噪声向量 𝑧，作为生成内容的“语义种子”

➢网络: 通常是一个深度神经网络（如反卷积网络）

➢输出: 生成的数据 𝐺(𝑧)，其维度和结构与真实数据 𝑥 相同（例如，一张图片）

➢目标: 生成的数据 𝐺(𝑧) 的分布 𝑃𝐺 要尽可能接近真实数据分布 𝑃𝑑𝑎𝑡𝑎

➢判别器 (Discriminator)

➢输入: 真实数据 𝑥，或者生成数据 𝐺(𝑧)

➢网络: 通常为标准的分类神经网络（如CNN）

➢输出: 一个标量值 𝐷(𝑥)，表示输入数据为“真实”的概率（或分数）

➢目标: 对真实数据 𝑥 输出高分（接近1），对生成数据 𝐺(𝑧) 输出低分c（接近0）

GAN的核心机制：模型架构
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➢GAN的训练过程是一个博弈过程，其目标函数为

min
𝐺
max
𝐷

𝑉(𝐷, 𝐺) = 𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + 𝔼𝑧∼𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]

➢最大化判别器𝐷(max D)：学习区分真实数据和生成数据

➢𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)]: 真实数据 𝑥，最大化 𝐷(𝑥)，即让 log𝐷(𝑥)最大

➢𝔼𝑧∼𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]: 生成数据 𝐺(𝑧) ，最小化 𝐷(𝐺(𝑧))

➢log(1 − 𝐷(𝐺(𝑧))) 最大

➢等价于训练一个二元分类器𝐷，正确区分真实样本和生成样本

➢最小化标准的二元交叉熵损失

➢最小化生成器 G (min G)：学习欺骗判别器

➢G 无法影响第一项 𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)]

➢最大化 𝐷(𝐺(𝑧)) ，等价于最小化 𝔼𝑧∼𝑃𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]

对抗博弈的数学表达：价值函数



模型训练过程
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➢交替

训练流程图

开始: 初始化 G 和 D

For 每个训练迭代 (Epoch/Iteration):

步骤 1: 固定 G, 训练 D

从真实数据集中采样
一批样本 x

生成一批伪造样本G(z) 
(z为随机噪声)

更新 D 的参数
(梯度上升)

目标: max logD(x) + log(1-D(G(z)))

步骤 2: 固定 D, 训练
G

采样新的一批
随机噪声 z

更新 G 的参数
(梯度下降)

目标: min log(1-D(G(z)))

循 环

训练结束
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➢直接求解minmax问题很困难，采用交替迭代优化的方式训练:

➢Step 1: 固定 G，优化 D

➢从真实数据集中采样一批样本 {𝑥1, . . . , 𝑥𝑚}

➢从噪声分布 𝑃𝑧 中采样一批向量 {𝑧1, . . . , 𝑧𝑚}，通过生成器得到一批伪造样本 {𝐺(𝑧1), . . . , 𝐺(𝑧𝑚)}

➢使用这些真实样本和伪造样本，通过梯度上升来更新判别器 D 的参数，以最大化目标 𝑉(𝐷, 𝐺)

∇𝜃𝑑
1

𝑚
෍

i=1

m

[log𝐷(𝑥𝑖) + log(1 − 𝐷(𝐺(𝑧𝑖)))]

➢Step 2: 固定 D，优化 G

➢从噪声分布 𝑃𝑧 中采样新的一批向量 {𝑧1, . . . , 𝑧𝑚}

➢通过梯度下降来更新生成器 G 的参数，以最小化目标 𝑉(𝐷, 𝐺)

∇𝜃𝑔
1

𝑚
෍

i=1

m

log(1 − 𝐷(𝐺(𝑧𝑖)))

➢训练初期，log(1 − 𝐷(𝐺(𝑧))) 梯度较小（饱和区）。实践中常使用“非饱和”目标函数，即最大化

log(𝐷(𝐺(𝑧)))，这提供了更强的梯度信号

训练算法：交替优化



GAN的理论分析
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➢GAN的收敛点与JS散度

➢原始论文证明了一个关键理论

➢在理想情况下 (即判别器D有无限建模能力)，对于固定的G，最优判别器 𝐷∗(𝑥) 为

𝐷∗(𝑥) =
𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝐺(𝑥)
➢代表，判定来自真实数据的概率

➢将 𝐷∗(𝑥)代入整个博弈的价值函数，证明了GAN的理论目标等价于最小化JS散度

➢该博弈的理论价值为：𝐶(𝐺) = max𝐷𝑉(𝐷, 𝐺) = 2 ⋅ 𝐽𝑆𝐷(𝑃𝑑𝑎𝑡𝑎||𝑃𝐺) − 2log2

➢注意：实践中G优化的是独立的损失函数，而非直接优化𝐶(𝐺)。对抗训练是间接逼近该理论

目标的过程

➢对抗训练与纳什均衡

➢当 𝑃𝐺 = 𝑃𝑑𝑎𝑡𝑎 时，JS散度为0，𝐷∗(𝑥) = 1/2，判别器无法区分真假，博弈达到纳什均衡

理论的优雅：GAN的终极目标



理论与实践的鸿沟：GAN为何难以训练
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➢理论根源：流形假设 (Manifold Hypothesis)

➢高维数据（如图像）分布在空间中的低维流形上。在训练初期，两个流形几乎没有重叠

➢导致的连锁反应

➢判别器过于强大：由于两个分布不重叠，判别器可以轻易地找到一个超平面将它们完美分开

➢对于真实样本，𝐷(𝑥) → 1；对于生成样本，𝐷(𝐺(𝑧)) → 0

➢JS散度失效

➢当分布不重叠时， 𝐽𝑆𝐷(𝑃𝑑𝑎𝑡𝑎||𝑃𝐺) = log2，无法衡量“远近”，其梯度为0

➢生成器梯度消失

➢生成器的损失函数 log(1 − 𝐷(𝐺(𝑧))) 的梯度正比于 𝐷 的梯度

➢当 𝐷(𝐺(𝑧)) 接近0时，判别器损失函数的梯度也趋近于0

➢生成器 G 接收不到有效的梯度信号，无法学习和改进。训练停滞

实践困境：为什么GAN难训练？
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➢In most cases, 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎 are not overlapped.

➢1. The nature of data

➢Both 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 are low-dim manifold in high-dim space.  

➢2. Sampling

➢Even though 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 have overlap.  

JS divergence is not suitable

𝑃𝑑𝑎𝑡𝑎
𝑃𝐺

𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

……

Intuition: If two distributions do not overlap, binary 
classifier achieves 100% accuracy.

Equally bad

The accuracy (or loss) means nothing during GAN training.



WGAN
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➢更好的Wasserstein-1 距离 (Earth Mover's Distance, 推土机距离)

➢ 将一个概率分布（一堆沙土）变换成另一个（一个沙坑）所需移动沙土的“最小平均代价”

➢即使两个分布完全不重叠，依然能提供一个有意义的、平滑的距离度量

➢WGAN的目标函数(利用Kantorovich-Rubinstein对偶性)

𝑊(𝑃𝑑𝑎𝑡𝑎, 𝑃𝐺) = sup∥𝑓∥𝐿≤1 𝔼𝑥∼𝑃𝑑𝑎𝑡𝑎[𝑓(𝑥)] − 𝔼𝑥∼𝑃𝐺[𝑓(𝑥)]

➢𝑓 为判别器（在WGAN中称为Critic），它不再输出概率，而是输出一个实数分数

➢∥ 𝑓 ∥𝐿≤ 1 是关键的 1-Lipschitz约束，要求Critic函数必须足够“平滑”

➢WGAN的minimax博弈

min𝐺max𝐷∈𝒟 𝔼𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝔼𝑧~𝑃𝑧 𝐷 𝐺 𝑧

➢其中 𝒟 是所有1-Lipschitz函数的集合

Wasserstein GAN (WGAN)
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➢原始GAN判别器

➢输出的是概率，经过Sigmoid激活

➢像“悬崖”，底部梯度饱和

➢WGAN Critic

➢输出的是分数，受Lipschitz约束

➢像“平滑的斜坡”，处处有梯度

➢Lipschitz约束保证了无论G多差，总能获得有效的梯度来学习

WGAN为何能解决梯度消失？
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➢强制Critic满足1-Lipschitz约束是WGAN成功的关键

➢Weight Clipping (原始WGAN)

➢每次更新Critic参数后，将其裁剪到一个小范围 [-c, c] 内

➢简单粗暴。会导致Critic倾向于学习非常简单的函数，或者在裁剪边界处梯度消失/爆炸，降低

了模型容量和训练稳定性

➢Gradient Penalty (WGAN-GP)

➢在Critic的损失函数中加入一个惩罚项，惩罚其梯度范数偏离1的行为

➢𝜆𝔼 ො𝑥∼𝑃ෝ𝑥
[(∥ ∇ ො𝑥𝐷(ො𝑥) ∥2 −1)

2]，其中 ො𝑥 是在真实样本和生成样本之间的随机插值点

➢效果显著优于Weight Clipping，成为后续很多GAN模型的基础

➢Spectral Normalization (SN-GAN)

➢对Critic网络中的每一层的权重矩阵进行谱范数归一化，使其Lipschitz常数被约束为1

➢计算开销小，实现简单，且能提供比Gradient Penalty更稳定的训练过程。目前成为主流方法

WGAN的实践：如何实现Lipschitz约束？



Conditional Generation
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➢DCGAN (2015)

➢奠定了GAN用于图像生成的架构指南。使用卷积层替代全连接层，用BatchNorm稳定训练，

消除了池化层。

➢Progressive GAN (2017)

➢渐进式增长。从低分辨率（4x4）开始训练，逐步增加网络层数以生成更高分辨率

（1024x1024）的图像。极大地提升了生成质量和训练稳定性。

➢StyleGAN (2018-2020)

➢风格控制与解耦。引入映射网络（Mapping Network）将输入噪声 𝑧 映射到中间隐空间 𝑤，

并通过仿射变换（AdaIN）在不同尺度上控制生成图像的“风格”。实现了前所未有的生成质

量和可控性。

GAN生态：架构的进化
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➢如何控制GAN生成的内容？（例如，生成指定数字的MNIST图像）

➢解决方案: 将条件信息 𝑦 (如类别标签、文本描述) 同时提供给生成器和判别器。

➢生成器 G: 输入变为 (𝑧, 𝑦)，目标是生成符合条件 𝑦 的图像 𝐺(𝑧, 𝑦)。

➢判别器 D: 输入变为 (𝑥, 𝑦)，目标是判断图像 𝑥 是否真实 并且 是否与条件 𝑦 相匹配。

➢cGAN目标函数:

min𝐺max𝐷𝑉(𝐷, 𝐺) = 𝔼(𝑥,𝑦)∼𝑃𝑑𝑎𝑡𝑎[log𝐷(𝑥, 𝑦)] + 𝔼𝑧∼𝑃𝑧,𝑦∼𝑃𝑦[log(1 − 𝐷(𝐺(𝑧, 𝑦)))]

➢应用: Text-to-Image, Image-to-Image Translation (pix2pix) 等。

GAN生态：可控生成 (cGAN)
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Text-to-image

Generator

𝑧

𝑦

𝑥

red eyes

red eyes

black hair

yellow hair

dark circles

red hair,
green eyes

blue hair,
red eyes
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Conditional GAN

True text-image pairs:

𝑦 is realistic or not + 
𝑥 and 𝑦 are matched or not

(red eyes,              ) 1

0

G
𝑧Normal distribution

𝑦 = 𝐺 𝑐, 𝑧
Image

𝑥: Red eyes

D 
(better) scalar

𝑦

𝑥

(red eyes,              )0(red eyes,              )
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Conditional GAN

https://arxiv.org/abs/1611.07004

G
𝑧

𝑥

Image translation, or pix2pix

𝑦 = 𝐺 𝑐, 𝑧
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Conditional GAN

Testing:

input supervised GAN

G
𝑧

Image D scalar

GAN + supervised
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➢如何在没有成对的训练数据的两个领域之间进行图像转换？

➢如，马 -> 斑马，但没有“同一匹马”和“其对应的斑马”照片

➢核心思想：循环一致性 (Cycle Consistency)

➢双向生成: 训练两个生成器，𝐺𝑋→𝑌 和 𝐺𝑌→𝑋，以及两个对应的判别器 𝐷𝑌 和 𝐷𝑋

➢对抗损失: 𝐺𝑋→𝑌 试图生成 𝐷𝑌 无法分辨的“假Y”；𝐺𝑌→𝑋 试图生成 𝐷𝑋 无法分辨的“假X”

➢循环一致性损失: 一个从X域转换到Y域的图像，应该能被“转换回来”并恢复原状

➢Forward cycle: 𝐺𝑌→𝑋(𝐺𝑋→𝑌(𝑥)) ≈ 𝑥

➢Backward cycle: 𝐺𝑋→𝑌(𝐺𝑌→𝑋(𝑦)) ≈ 𝑦

➢这个损失（通常是L1或L2范数）强制生成器保留原始图像的内容结构，只改变其风格

➢总损失 = 对抗损失 + 𝜆 × 循环一致性损失

GAN生态：无监督转换 (CycleGAN)



Learning from Unpaired Data
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Deep

Network
𝒙 𝒚

unpaired

Image Style Transfer 

Domain 𝒳 Domain 𝒴

Can we learn the mapping without any paired data?

Unsupervised Conditional Generation 

Learning from Unpaired Data
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➢Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

GAN生态：无监督转换 (CycleGAN)
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网络框架
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结果
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Cycle GAN

Dual GAN

Disco GAN

https://arxiv.org/abs/1703.10593

https://arxiv.org/abs/1704.02510

https://arxiv.org/abs/1703.05192
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https://arxiv.org/abs/1711.0902

0

StarGAN
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➢评估生成模型的质量和多样性是一个开放性难题

➢ Inception Score (IS) - 越高越好
➢使用一个在ImageNet上预训练的Inception网络

➢质量: 对于一个清晰的生成图像 𝑥，其类别预测分布 𝑝(𝑦|𝑥) 应该具有低熵（即分类器很确定它是什么）

➢多样性: 对于所有生成图像，其类别预测的边缘分布 𝑝(𝑦) = ∫ 𝑝(𝑦|𝑥 = 𝐺(𝑧))𝑑𝑧 应该具有高熵（即生成的图像涵盖了多种类别）

➢𝐼𝑆 = exp(𝔼𝑥∼𝑃𝐺[𝐾𝐿(𝑝(𝑦|𝑥)||𝑝(𝑦))])

➢缺点: 对噪声和模式坍塌敏感，不与人类感知强相关

➢ Fréchet Inception Distance (FID) - 分数越低越好
➢比较真实图像和生成图像在Inception网络特征空间中的分布差异

➢将真实图像和生成图像输入Inception网络，提取某个中间层的激活特征

➢将两组特征向量分别建模为多元高斯分布，计算它们的均值 (𝜇𝑟 , 𝜇𝑔) 和协方差矩阵 (Σ𝑟, Σ𝑔)

➢计算这两个高斯分布之间的Fréchet距离

➢𝐹𝐼𝐷 =∥ 𝜇𝑟 − 𝜇𝑔 ∥2
2 +Tr(Σ𝑟 + Σ𝑔 − 2(Σ𝑟Σ𝑔)

1/2)

➢优点: 对模式坍塌更敏感，与人类感知的一致性更好。目前是评估图像生成质量的黄金标准

➢其它量化指标
➢Perceptual Path Length (PPL)：衡量生成器潜在空间(latent space)的平滑性

➢Kernel Inception Distance (KID)：使用核方法（kernel method）来计算距离

如何评价GAN的好坏？



Evaluation of Generation
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➢评估生成模型的质量和多样性是一个开放性难题。

➢Inception Score (IS) - 越高越好

➢使用预训练的Inception网络，同时衡量质量和多样性。

➢质量: 清晰图像的类别预测  𝑝(𝑦|𝑥)应有低熵 (分类器很确定)。

➢多样性: 所有生成图像的平均类别预测 𝑝(𝑦|𝑥) ∥ 𝑝(𝑦) 应有高熵 (涵盖多种类别)

➢IS = exp 𝔼𝑥∼𝑃𝐺 𝐷𝐾𝐿 𝑝(𝑦|𝑥) ∥ 𝑝(𝑦)

➢Fréchet Inception Distance (FID) - 越低越好 (黄金标准)

➢比较真实图像和生成图像在Inception网络特征空间中的分布差异

➢将两组特征向量分别建模为多元高斯分布，计算它们的均值(𝜇𝑟, 𝜇𝑔)和协方差矩阵(Σ𝑟, Σ𝑔)

➢计算这两个高斯分布之间的Fréchet距离

➢FID = 𝜇𝑟 − 𝜇𝑔 2

2
+ Tr Σ𝑟 + Σ𝑔 − 2 Σ𝑟Σ𝑔

1/2

➢对模式坍塌更敏感，与人类感知的一致性更好

永恒的挑战：如何评价GAN
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➢IS的缺陷：无法有效检测类内模式坍塌

➢例如：一个模型只生成ImageNet中“狗”这一类的1000张不同图片。它的IS分数会很高（质

量高，类内多样性好），但全局多样性极差（没生成猫、车等）

➢模式坍塌 (Mode Collapse)

➢生成器只学会了生成少数几个看起来真实的样本

➢记忆/过拟合 (Memorization)

➢生成器只是记住了训练集样本，而不是学习其分布

➢好的评估指标(如FID)和检查方法(如寻找最近邻)可以检测这种行为

评估指标的局限性



44

➢GAN的核心贡献:

➢提出一种全新的、通过对抗博弈进行学习的生成模型框架，避免了直接计算棘手的似然函数

➢在图像生成等领域取得了革命性的成果，生成图像的逼真度达到了前所未有的水平

➢核心挑战与未来方向

➢训练稳定性

➢评估: 自动、可靠且与人类感知高度一致的评估指标仍是研究热点

➢可控性与可解释性: 如何更精细、更解耦地控制生成过程

➢新领域应用: 将GAN的思想推广到文本、音频、3D模型、科学模拟等更广泛的领域

➢GAN开启了一个充满无限可能的“生成时代”

总结与展望
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