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GANR)EZ:L B8 : BERSREE

>GANRIIRAEAE: B3, SEMFS]
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Basic Idea of GAN

> This is where the term “adversarial” comes from
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GANRIZIDHLE]: REIRR M

>1EZE

AR HR LS (GAN) [RISHESE [Goodfellow et al., 2014]

ERER G(z)

BEH LIRS 2 4ppse(G)  (Fake Sample) | wmysa p ==
—e

>  — T TN I TS 2
Generator | Discriminator (BRI ESERIBEER)

27 Pz

1. BFFIBIES (BE G)
B#x: max log(D(x)) + log(1-D(G(z2)))

BSLHAN x

X~ Pgata

2. EHHERIEE (ERE D)
B#x: min log(1-D(G(2))) [H#X3wD]
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GANRIZIDHLE]: REIRR M

>4 25 (Generator)
AN NEREW ST (WESHTH) PREFFEVIEFEE 2z, (FALRASH “EXHF
>Mig: BER—NMREWEME (RERMLE)
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MMEERRFERIE: HERKR

>GANRIZEIER—MERTIE, HERRHEA

MINMaxV (D, 6) = Ey-pyyyyx) 108D 0] + Eyp oy l0g(1 = D(G(2)))]
>R AUFIAZED (max D): FIXSELHIEME R HE
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WZRRIZE

>3 FF44: FIHEH G R D

For BMIIERiER (Epoch/Iteration):

$TR1:EEG, ))IIgkD

€l )
MESLEGRESPRE EHT D HSH ER—HERIEREARG(2)
— A x (BB ETT) (2/9REHIEETS)
- J

B#R: max logD(x) + log(1-D(G(z)))

v

S8R 2: ERE D, Ik
G

RAFFE—HE B3 G B
BEHIRRS 2 (BBETNHE)

B#x: min log(1-D(G(z)))

'

WEREER
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WEHEZE: ZHFML

> BiEKBminmaxol @R &M, RAXZERMUEBARIIZ:
>Step 1: BlE G, it D
> NESSHBEPREFE—MHER (xq,..., 0}
>MNIRE DT B, PRE—HEE {2,,..., 2y}, BEERSIER—MAEEK (G(2),...,6(zn)}
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Voup; ). 10gD(x) +10g(1 = D(G(z))]

>Step 2: EE D, it G
> MNIRFE 37 P, PRI —IEE (2,,..., 2}
> BT E TRRENERSE G e, USRMLBERRVOD,6)

1 m
Vo, 7r ), 10801 = D(G(z)))
SIAIE, log(1 - D(G(2) BERN (MK) . SHARER “E0M BiRdEs, HEAL
log(D(G(2))), X TERNHERES
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ISR : GANBIZ R B

> GANRYUST S =2 5 JSHEUE
> [RIGISSOIERR 7 — N < TR 1R
>EEEERT (ANHIRIEDE LREERE ), WTFEENG, SHHZIE D (x) A

* _ Pgata(X)
P (x) B Pdata(x) + PG(x)

>RE, HlEREETRIRIOER

> D () RAEMEFTHNERL, IR T GANWIEIR BA-EFEMN T R/AMLISEHE
>ZEZERIRISINMER: C(G) = maxpV(D,G) = 2 - JSD(Pyarql|Ps) — 2log2

AR SSBPCHALHRIEIAINAERR, MIFEZREMILC(G). MR EEEILIZIEL
Bira)id iz

> g S N 15T
> P = Py BE, JSEREEHFO, D*(x) = 1/2, HIBIRTERDEME, EIABIMHE
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SCEEEE: R AGANMENIZ?

>IRIRIRIE: RAZERIE (Manifold Hypothesis)
>EERE (EG SHAESEFRIRERE £, EIINEE, RPIREJILESEEESE
> SEUAIE $ 2 Y
>FlAIEETFRA: BTANPHAESE, FRFATURGHRE—MEBTEEElTESF
>IFEIHAR, D(x) » 1; IFERER, D(G(2) -0

> JSHEUE L5
>UDNTHARESBR, JSD(PyaeallPs) = log2, FoiEEE “WTiE” , HBE RO
>4 AR RR B

>4 B HUIR F ] log(1 — D(G(2))) MIBREIELLT D MR E
>3 D(G(2)) $HIL0RT, FIRI 2355k ok a946 FEE a0
> EE G AR EYBHEES, TEFIMKEHt. ST
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JS divergence is not suitable

»In most cases, P; and P;,;, are not overlapped.
»1. The nature of data

»Both P;,:, and P, are low-dim manifold in high-dim space.
»2. Sampling

P data

»Even though P,;,:, and P; have overlap.

*»

PGO‘ l I |Pdata PG1

#Equally badw
JS(P(,iO,Pdam) JS(Pg, Paata) ™" JS(Psyq» Paata)
= 022 — ‘lei = “

Intuition: If two distributions do not overlap, binary

classifier achieves 100% accuracy.
The accuracy (or loss) means nothing during GAN training.
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Wasserstein GAN (WGAN)

> B iR Wasserstein-1 $E 55 (Earth Mover's Distance, HETHES)
> F— MRS (0L TESF—D (— N0 BEBHP LM “SOFEHRMN”
>»EERN D HTENEE, KIARE Eﬁi\—’\ﬁfiﬁ(ﬁ’\]\ TEREEEE
>WGANH B #1282 (F1 F§ Kantorovich-Rubinstein B 14)
W (Paata, Ps) = supyri,<i{Ex~p g, [ ()] = Exep, [f ()]}

>f AFIBNE (EWGANSRFRACrtc) , EREREME, MEHH— PS8 H
I <1 2RE1- LIpSChItZQ’JEE FERCriticR BB B “FiB

> WGANABIminimaxi®

mlnGmaXDED{IEx~Pd m[D(x) E,-p, [D(G(Z))]}
He D 2B 1-LipschitzeR # Y&

22



WGAN J3{r] SE il R 6 BE HSK 7

> [RIRGANF 7l 25
>R EEER, 233 Sigmoidi#iE
> “BE” , KEMEEIE
»WGAN Crltlc
>IR3, FLipschitz2)sR
> “TIERREE” , LB EE

> LipschitzZ)R{RIE T TieGHE, S8

IRISEMHIEEEREFES)
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WGANAYSER:: anfaIsCLipschitzZ)3R ?

> 5@ | Critici# /& 1-LipschitzZ) 3R 2 WGANRR Th il < 2
>Weight Clipping (JR#§WGAN)
> @R EFCrtics#fE, BFHIHEE—NERE [, c] A
>EREFE. RFHCriticliimTFEIEEEENERY, NEERTEFUHEEK/IEIE, FR
TIEBEREM)IEGREM
» Gradient Penalty (WGAN-GP)
> ECritichYIR KR BB P MAN—NMETI, ESTHEESCHRE111TA
»AEz p [(Il VeD(R) ll; —1)%], H 2 SEESSHEARE R 2 BRIBEIHRER
>R B Z K FWeight Clipping, B JI/E4:R % GANIRE BB At
» Spectral Normalization (SN-GAN)
> X Critic & P B—E R EREMEHITIESEHYT—1, FHLipschitzE#H#H2IR A1
> E /)N, SLIE R, HEeiRftttGradient Penalty Efa ERIIIZE 2. BEIRRAERAE

San
g
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Conditional Generation



GANAEZR: ZEHarbiHik

»DCGAN (2015)
>EBEE T GANA TEIGERRIZEAERE. FRAEREEKE£ERE, ABatchNormigE ik,
HER T LR

»Progressive GAN (2017)
>AETHIVIER . WRSHER (4x4) Figilz, ZFXIEMMNEERAERE SR

(1024x1024) B9EG . HRAHIRH T ERREMINISEKIRE M.

» StyleGAN (2018-2020)
> X AEIEEHI SR8 . SINMETMLZ (Mapping Network) IS \IERE z MUETE|FE)f2 s8] w,
FiBEIHHTH® (AdaIN) EARIRE LIS RESR “RAE” o XM T ETRB SRR
S FATHE M
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GANAEZ: AJ{E4 R (cGAN)

>R FIGANE R BIRE? (a0, S RiEEHFRIMNISTE %)
PERAR: BERHER y (WEANFRFE.. XAHEE) BREHEESE izmfFIREE.
>HE R G BMIATA (z2,y), BMBERTEEE y B G(z, ),
>FIRNEE D: AT A (x,y), BmEFIEHESR x 2E5EX HEH BES5FH v HILE.
>CcGAN B #rie& 3

mingmaxpV (D, G) = Exyy~pyy,, [logD(x,y)] + [Ez~Pz,y~Py [log(1 — D(G(z y)))]
>N A Text-to-lmage, Image-to-Image Translation (pix2pix) 3.
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Text-to Image n red eyes /;‘ Wi yellow hair

black hair ﬁ dark circles

red eyes

./'

@wy

Generator Do o

red hair,
green eyes

;', 1‘?‘

_ A ’*t:
blue hair, i
red eyes -~
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Conditional GAN

X:Red eyes wmlp ~
e —> y - G(CI Z)

Normal distribution Z iy

Y -

D > y is realistic or not +
(better) scalar =% x and y are matched or not

True text-image pairs: (red eyes, M
WA=

(red eyes, @\ ¥ = @ (red eyes, Image @
N

W=

X ey

St
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Conditional GAN

https://arxiv.org/abs/1611.07004

Labels to Street Scene

input

Day to Night

)

output
Edges to Photo

5

input

output i
Image translation, or pix2pix

input

output
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Conditional GAN

D scalar

=
G
Z#

Testing:

input supervised GAN + supervised
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GANEZS: TliE¥:# (CycleGAN)

> UNAT 7E 7% 78 BT B I 2R 3 1R B9 R A SUIs < [B) i 1 T B iR G5 4 7
>, §->55, B%F ‘F—I5” 1 “HNNHKRS” BR

> ¥ B B —EU4 (Cycle Consistency)
> W EIE R WNEBRNEREE, Gxoy M Gyoy, UK NXTNMEIFIRIZE Dy 1 Dy
>Rk Gyoy MEIEK Dy TTETH “RY” 5 Gyox EIERK Dy TTER#ER “BX”
> BT —EMERR: — N MXIEEE R B VIR E R, NMixget “FFiREsk” HRERERK

»Forward cycle: Gy_x(Gx_y(x)) = x

»Backward cycle: Gy_y(Gy_x(¥)) =

>R GBERL15L2SEH) ﬁi?ﬁlliﬁk%%ﬁ AR S, RNTHEXAE
> EIK = XK + A x BT —B4mK
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Learning from Unpaired Data




Learning from Unpaired Data

Deep
X e— — Y
Network

Image Style Transfer

Domain X D e Domain Y

unpaired

Can we learn the mapping without any paired data?
Unsupervised Conditional Generation
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GANAETS: TIEE%# (CycleGAN)

»Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

c D ¢

X /—\ Y X Y X Y cycle-consistency
\—/ cycle-consistency . _..\ "'—‘5.\. T L loss

F loss *

(a) | (b) | (c)

Figure 3: (a) Our model contains two mapping functions G : X — Y and I' : Y — X, and associated adversarial discriminators Dy and Dx. Dy
encourages G to translate X into outputs indistinguishable from domain Y, and vice versa for D x, F', and X. To further regularize the mappings, we
introduce two “cycle consistency losses™ that capture the intuition that if we translate from one domain to the other and back again we should arrive where we
started: (b) forward cycle-consistency loss: x — G(x) — F(G(x)) =~ x, and (c) backward cycle-consistency loss: y — F(y) — G(F(y)) = y
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Discriminator A

Decision [0,1]

Start

Input_A

Cyclic_A

Generator
B A2B

Cyclic_B

Decision [0,1] Discriminator A

Decision [0,1]

~
Discriminator B Decision [0,1] Sy Geg;':mr - -

Discriminator B ‘

Input_B

Generator |, ~ 3
B2A

Start
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Zebras Z_ Horses Summer {_ Winter

photo —> Monet - horse —» zebra winter —» summer
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LCONST

Disco GAN

https://arxiv.org/abs/1703.05192 ﬁ| [lnﬁ
LDA o-{‘

Dual GAN s

https://arxiv.org/abs/1704.02510

? Gga
t i Reconstruction error )
, e | LA o — 6,(GaCo, 2,2
Membership Dlscrm inator e
score T

Gp(v, 2’ )
@l@! Generator G, Gp(Gy(v,2'),2) E
/ ‘ ! | e E’ D) wenberio P—

Reconstruction el
llue — Gy (Galu, ) E
o o hmm}

Domain U (sketch) Domain V (photo)

G g . — 1
Cycle GAN Al N N 1 N P

httpS://a I‘XiV.OFg/abS/'I 703.10593 l F l X ./->Y X g Y -cycle-cvi);lsslstency
Dx Dy | T \k_ ‘<__/‘




(a) Cross-domain models (b) StarGAN

L G21,
StarGAN

https://arxiv.org/abs/1711.0902
0

(a) Training the discriminator (b) original-to-target domain (c) Target-to-original domain (d) Fooling the discriminator

| Depth-wise concatenation 1

Real image Fake image

(1) f—JiZJ

(1) (2)

—

L—\Ill

Real / Fake Real / Fake

[ lnputirﬁage ] -

Depth-wise concatenation
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TR GANBYIF IR ?

> S AR R B R E M2 M4 B — N FE AU MR
> Inception Score (IS) - ¥ = HLF
> {# Fl—/ £ ImageNet L Fi)Il 2k B9 Inception M 4&
> RE: MT—NEMIERE R x, EEFNFTNS p(y|x) BizEBKE (BoLXFRBEECRMTA)
>SN S TRAEERER, BEEHNTNEBESH p(») = [pOlx = 6(2)dz FiZzEASME (BERNEGREE T ZMHAEH)
»IS = exp(Ex-p; [KL(p )P ()]
>R MR AEFIRTHEEUR, 5 ALRMEMEX
> Fréchet Inception Distance (FID) - 43 #u# K # 4F
> b3 B L E& Fn 4 B Bl & ZE Inception M Z4HE S B R I N = &
> G E L EG RS R E GBI Inceptionf48, IRENE AN i8] R a8 EEHE
>IEFESHEmE S AERASTEHSM, HEEININE (u. uy) FHEEER 2, 3,)
> ERX AN ST Z AR FréchetiE &
»FID =1l py — pig 13 +T0(Ey + g — 2(5,Z4)Y2)

> HEEWIER

>Perceptual Path Length (PPL): #24 pk s34 7= 8)(latent space)dIFia
»>Kernel Inception Distance (KID): fEf#%757% (kernel method) Rit+HEHEESE
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Evaluation of Generation




JKIERIEEER : A4 GAN

>IEE R R F RREMZ MR — D AU MER
>Inception Score (IS) - # 5 #iF
> T ZkEY Inception 4%, [EIRTEEREM BN
>FRE: BWESRBI BTN p(y|x) M BIRE (57 L= RHE).
>R R BEEREGREIZEANTN pOlx) | pO))BEEKE (B ML)
»1S = exp(Ex-p, [Dg (0 [%) | p(¥))])
> Fréchet Inception Distance (FID) - #{X#4F (R&HnE)
> L3 B SE B A0 i Bl {5 fE Inception B HEHES BRI N ER
>IEREFHERE S AEREAZ TS SH, HEENNEW,, n) T FEREREE,, Z,)
> EXANESHT S 7 < [BAYFréchetiE =
>FID = [l — pll? + Tr (2, + 24 — 2(2:25) %)
>IRA R E R, 5 AXRA—HIEELF
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PHEIEFRHY RPR 14

> ISHIERPA: ToEBBHE ML RIRA S
> —MRE R4 KImageNetd “J” X—EHI10005 KA EEF. EMISHHE SRS (R
25, XAZHEMLT) , B2EZHURE CRERE. £F)
> 1R\ 15m (Mode Collapse)
PERFERAFSTERLDHILNEBEREIER
>121Z/i3 & (Memorization)
PERFRRARIEETINEEHR, MAREIHS
> EF R PG FEFR(AIFID)AIE B 5 7R (AR TR SRIA S8 AT LU X M1 T A
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> GANRY#% L STk

>IRE—MEH. BEETETEINERRRER, BRTHEETERFIUARRE

>EBRIGERFIREIEG T 2w ERRR, EREGVEBEREILE] T BIFIARERIKE
>z S AR KT A

>INGIRE M

>1E: B IR A5 ARRASE—HAHEEiRNEM R AR

> AR SRTARRR L NI SEAR A S RRAR TR R AR

>FTOUBN A I GANRYEIEHE BT AR F55. SDIREL, MEFRIUFE IZRISUE
»GANFFE T — 1 Fe# CPRATRERY “HE ABFAR”
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